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Abstract
In this tutorial, we describe how to use monad transformers in order to incrementally add
functionality to Haskell programs. It is not a paper about implementing transformers, but
about using them to write elegant, clean and powerful programs in Haskell. Starting from an
evaluation function for simple expressions, we convert it to monadic style and incrementally
add error handling, environment passing, state, logging and input/output by composing
monad transformers.

1 Introduction

This paper gives a step-by-step introduction to monad transformers in Haskell.
Monads are a remarkably elegant way for structuring programs in a flexible and extensible

way. They are especially interesting in a lazy functional language like Haskell, because they
allow the integration of side-effects into otherwise purely functional programs. Furthermore, by
structuring a program with monads, it is possible to hide much of the necessary book-keeping
and plumbing necessary for many algorithms in a handful of definitions specific for the monad
in use, removing the clutter from the main algorithm.

Monad transformers offer an additional benefit to monadic programming: by providing a
library of different monads and types and functions for combining these monads, it is possible
to create custom monads simply by composing the necessary monad transformers. For example,
if you need a monad with state and error handling, just take the StateT and ErrorT monad
transformers and combine them. The goal of this paper is to give a gentle introduction to the
use of monad transformers by starting with a simple function and extending it step by step with
various monadic operations in order to extend its functionality. This paper is not about the
theory underlying the monad transformer concept, and not about their implementation (except
for what is necessary for successfully using them).

The reader is expected to be familiar with functional and basic monadic programming, such
as the use of the Monad class and do notation in Haskell. Everything else will be explained on
the fly.

The Haskell programs in this paper use language features which are not in the current
Haskell’98 standard, since they use the non-standard library modules Control .Monad .Error etc.
Both the hierarchical module names of these modules and some of their implementation details
are beyond Haskell’98. Nevertheless, these extensions are well supported in current versions of
the Glasgow Haskell compiler (GHC) [?] and the Hugs Haskell interpreter [?]. The programs
have been tested using versions 6.4.2 and 6.5 (pre-release) of GHC and version 20050308 of
Hugs1.

The monad transformer modules are inspired by a paper by Mark P. Jones [?], which gives
a very readable introduction to monadic programming, but is less practical than this paper.

This document has been converted from a literate Haskell script using Andres Löh’s lhs2TeX2

∗Sections ?? and ?? are added by Wei Hu, Feb 2008. Unfortunately the bib file is missing, so are the references.
1You need to pass the -98 option to Hugs in order to allow the required Haskell extensions.
2http://www.iai.uni-bonn.de/~loeh/
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preprocessor. The script is executable by both GHC and Hugs. The literate Haskell source file
Transformers.lhs is available from my homepage34.

It is probably best to read this paper near a computer so that you can look up the types and
descriptions of the various functions used from the monad transformer library or the Haskell
standard library. The best setup is a printed copy of this paper, a web browser showing the online
library documentation and a running incarnation of ghci or hugs with a loaded Transformers
module (to be introduced below) for checking out types interactively using the :type (or :t)
command.

1.1 Example Program

As a running example, an interpreter for a simple programming language will be used throughout
the paper. All the code will be located in a module called Transformers, which has the following
header:

module Transformers where

import Control .Monad .Identity
import Control .Monad .Error
import Control .Monad .Reader
import Control .Monad .State
import Control .Monad .Writer
import Data.Maybe
import qualified Data.Map as Map

Several of the imported modules beginning with Control .Monad are only needed when you use
the monad transformers defined there. The Data.Maybe module defines useful functions for
dealing with optional values of type Maybe a, and the module Data.Map defines finite maps.
These will be used to define environments (variable-value mappings) in our little interpreter.

The following data types for modelling programs in that language will be used:

type Name = String -- variable names
data Exp = Lit Integer -- expressions

| Var Name
| Plus Exp Exp
| Abs Name Exp
| App Exp Exp
deriving (Show)

data Value = IntVal Integer -- values
| FunVal Env Name Exp
deriving (Show)

type Env = Map.Map Name Value -- mapping from names to values

The Name type is simply a shorthand for the standard String type. It is used to make clear
when we are talking about variable names and not about general strings. The Exp data type
has variants for literal integers (constants), variables, addition, λ expressions (abstractions) and
function application. The programs which are to be evaluated will be made up of the Exp
data type, whereas the results are from the Value type. Values are either integers or functions
(closures). The Env component of a FunVal is the environment in which the corresponding
λ-abstraction was evaluated.

3http://uebb.cs.tu-berlin.de/~magr/pub/Transformers.lhs
4http://www.cs.virginia.edu/~wh5a/personal/Transformers.lhs
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Since the example for using monad transformers will be an interpreter for the little language
defined above, we start by defining an evaluation function. This function is not monadic and
will serve as a kind of “reference implementation”. The definition of the interpreter function,
called eval0 , is straightforward.

eval0 :: Env → Exp → Value
eval0 env (Lit i) = IntVal i
eval0 env (Var n) = fromJust (Map.lookup n env)
eval0 env (Plus e1 e2 ) = let IntVal i1 = eval0 env e1

IntVal i2 = eval0 env e2
in IntVal (i1 + i2 )

eval0 env (Abs n e) = FunVal env n e
eval0 env (App e1 e2 ) = let val1 = eval0 env e1

val2 = eval0 env e2
in case val1 of

FunVal env ′ n body → eval0 (Map.insert n val2 env ′) body

Integer literals simply evaluate to themselves (packaged up in the Value data type), variables
evaluate to the values to which they are bound in the environment. The use of the fromJust5

function is necessary because the Map.lookup function returns a Maybe value. Note that the
use of this function introduces an error condition: when a variable is used which is not bound
anywhere using a λ expression, the program will halt with an error message. Addition is im-
plemented by simply evaluating both operands and returning their sum. Whenever one of the
addition operands evaluates to a non-number, the pattern matching in the let expression will
fail, also terminating the program with an error message. Abstractions simply evaluate to func-
tional values, which capture the environment in which they are evaluated. Function application
proceeds similar to addition, by first evaluating the function and the argument. The first ex-
pression must evaluate to a functional value, whose body is then evaluated in the captured
environment, extended with the binding of the function parameter to the argument value. The
case expression used here to deconstruct the functional value introduces another error possibil-
ity. In later sections of this text, we will handle these error cases using an error monad, which
gives us more control over their handling.

The definition of eval0 could be shortened a little bit, for example, the let expression in the
App case seems superfluous. Nevertheless, the definition given here will make it easier to relate
it to the monadic versions defined below.

The following example expression,

12 + ((λx→ x)(4 + 2))

can be used to test this interpreter and all of the others we will define shortly.

exampleExp = Lit 12 ‘Plus‘ (App (Abs "x" (Var "x")) (Lit 4 ‘Plus‘ Lit 2))

For example, entering

eval0 Map.empty exampleExp

in ghci will give the answer

IntVal 18

5fromJust has the type Maybe α → α
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2 Monad Transformers

The goal of using monad transformers is to have control over aspects of computations, such as
state, errors, environments etc. It is a bit tedious to reformulate an already written program in
monadic style, but once that is done, it is relatively easy to add, remove or change the monads
involved.

In this section, we will first rewrite the example program from Section ?? in monadic style
and then extend the data types and function definitions with various monad transformer types
and functions step by step.

2.1 Converting to Monadic Style

In order to use monad transformers, it is necessary to express functions in monadic style. That
means that the programmer needs to impose sequencing on all monadic operations using do
notation, and to use the return function in order to specify the result of a function.

First, we define a monad in which the evaluator will be defined. The following type syn-
onym defines Eval1 α as a synonym for the type Identity α. Identity is a monad imported
from Control .Monad .Identity , which is perhaps the simplest monad imaginable: it defines the
standard return and >>= operations for constructing operations in the monad, and additionally
a function runIdentity to execute such operations. Other than that, the identity monad has
no effect. In some sense, we will use this monad as a “base case”, around which other monad
transformers can be wrapped. For readability, we also define a function runEval1 , which simply
calls runIdentity .

type Eval1 α = Identity α
runEval1 :: Eval1 α→ α
runEval1 ev = runIdentity ev

Based on the Eval1 monad, we now rewrite the eval0 function as eval1 :

eval1 :: Env → Exp → Eval1 Value
eval1 env (Lit i) = return $ IntVal i
eval1 env (Var n) = Map.lookup n env
eval1 env (Plus e1 e2 ) = do IntVal i1 ← eval1 env e1

IntVal i2 ← eval1 env e2
return $ IntVal (i1 + i2 )

eval1 env (Abs n e) = return $ FunVal env n e
eval1 env (App e1 e2 ) = do val1 ← eval1 env e1

val2 ← eval1 env e2
case val1 of

FunVal env ′ n body →
eval1 (Map.insert n val2 env ′) body

The first thing to note is that the cases for Lit and Abs use the return function for specifying
their result.6 The next is that the Var case does not need a fromJust call anymore: The reason
is that Map.lookup is defined to work within any monad by simply calling the monad’s fail
function – this fits nicely with our monadic formulation here. (The fail function of the Maybe
monad returns Nothing , whereas the fail function in the Identity monad throws an exception,
which will lead to different error messages.)

The Plus and App cases now evaluate their subexpressions using do-notation, binding their
results to variables. In the Plus case, the result is returned using return, whereas in th App
case, the function value is further discriminated like in the eval0 function above.

6The ($) operator is function application with low precedence and mainly used to avoid parentheses.
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In order to test this interpreter, we have to evaluate the monadic action obtained by applying
eval1 to our example expression exampleExp. This is done by calling runEval1 defined earlier:

runEval1 (eval1 Map.empty exampleExp)

gives

IntVal 18

To recapitulate: conversion to monadic form consists mainly of returning function results
using the return function, and sequencing of monadic actions using do notation or the >>= or
>> (monadic bind) functions.

Note: The type of eval1 could be generalized to

eval1 :: Monad m ⇒ Env → Exp → m Value,

because we do not use any monadic operations other than return and >>= (hidden in the do
notation). This allows the use of eval1 in any monadic context, so that instead of

runEval1 (eval1 Map.empty exampleExp)

we could write

eval1 Map.empty exampleExp

at the ghci prompt. This would run the expression in the IO monad, because internally the
interpreter uses the print function, which lives in just this monad.7 In some contexts, this is a
nice feature, but in general you will be using some operations specific to a particular monad,
and this forces your operation to stay within that special monad.

2.2 A Few Words on Monads

We need to clarify some concept before moving on to monads and monad transformers. A data
type T is a monad if it is an instance of the Monad class. That is, we provided two functions
return and (>>=) for T, whose implementation depends on the very semantics of T. Besides the
constraints on the two functions’ types, they must obey the monad laws too, but this constraint
is not decidable by algorithms, and thus has to be enforced by programmers themselves.

The monad class is only an interface that specifies what a type T must provide to become
a monad. The real strengths of monads come from the power of type classes supported by the
strong type system, and the useful monad types predefined in the monad transformer library
(mtl). For instance, the Either type is a monad:

data Either a b = Left a | Right b deriving (Eq, Ord )

instance (Error e) => Monad (Either e) where
return = Right
Left l >>= _ = Left l
Right r >>= k = k r
fail msg = Left (strMsg msg)

The Monad class is further extended to more useful classes, including MonadError , MonadReader ,
MonadWriter , etc. These extended classes can be thought of as refined interfaces that require
more functions to be implemented by their instances. For example:

7This only works in recent versions of GHC and unfortunately not in Hugs.
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class (Monad m) => MonadError e m | m -> e where
throwError :: e -> m a
catchError :: m a -> (e -> m a) -> m a

class (Monad m) => MonadReader r m | m -> r where
ask :: m r
local :: (r -> r) -> m a -> m a

Although programmers can instantiate their own data types by defining the required func-
tions, it is always nice to make use of existing code:

newtype Reader r a = Reader { runReader :: r -> a }

instance Monad (Reader r) where
return a = Reader $ \_ -> a
m >>= k = Reader $ \r -> runReader (k (runReader m r)) r

instance MonadReader r (Reader r) where
ask = Reader id
local f m = Reader $ runReader m . f

newtype Writer w a = Writer { runWriter :: (a, w) }

instance (Monoid w) => Monad (Writer w) where
return a = Writer (a, mempty)
m >>= k = Writer $ let

(a, w) = runWriter m
(b, w’) = runWriter (k a)
in (b, w ‘mappend‘ w’)

instance (Monoid w) => MonadWriter w (Writer w) where
tell w = Writer ((), w)
listen m = Writer $ let (a, w) = runWriter m in ((a, w), w)
pass m = Writer $ let ((a, f), w) = runWriter m in (a, f w)

instance (Error e) => MonadError e (Either e) where
throwError = Left
Left l ‘catchError‘ h = h l
Right r ‘catchError‘ _ = Right r

In general, a type X (Cont, Reader, Writer, State, etc.) is an instance of Monad , and an
instance of MonadX as well. But Error is an exception here! Error is a class, not a type, and
not a subclass of Monad , so do not get confused.

What if we want to add error handling, state, logging, and I/O together? Most likely we do
not want to reinvent the wheel and instantiate our data type for each of those classes. This is
how monad transformers come into play! Basically, we use a stack of monad transformers to
morph our original type, with the innermost monad being Identity or IO . We will explain the
details below.

2.3 Adding Error Handling

We have already seen that our evaluation function is partial, that means it will terminate with
an error message for some inputs, for example for expressions with unbound variables or type
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errors.
Using monad transformers, we simply go to our local monad transformer library and take

the ErrorT monad transformer, using it to extend the basic Eval1 monad to Eval2 .

type Eval2 α = ErrorT String Identity α

The String type argument to ErrorT is the type of exceptions, that is the values which are used
to indicate error conditions. We use String here to keep things simple, in a real implementation
we might want to include source code locations (in a compiler) or time stamps (in some kind of
web application).

The function for running a computation in the Eval2 monad changes in two ways. First,
the result of evaluation is now of type Either String α, where the result Left s indicates that an
error has occurred with error message s, or Right r , which stands for successful evaluation with
result r . Second, we need to call the function runErrorT on the given computation to yield an
Identity computation, which can in turn be evaluated using runIdentity .

runEval2 :: Eval2 α→ Either String α
runEval2 ev = runIdentity (runErrorT ev)

We can now simply change the type of our eval1 function, giving the following version, called
eval2a.

eval2a :: Env → Exp → Eval2 Value
eval2a env (Lit i) = return $ IntVal i
eval2a env (Var n) = Map.lookup n env
eval2a env (Plus e1 e2 ) = do IntVal i1 ← eval2a env e1

IntVal i2 ← eval2a env e2
return $ IntVal (i1 + i2 )

eval2a env (Abs n e) = return $ FunVal env n e
eval2a env (App e1 e2 ) = do val1 ← eval2a env e1

val2 ← eval2a env e2
case val1 of

FunVal env ′ n body →
eval2a (Map.insert n val2 env ′) body

This version can be run using the runEval2 function defined above. When we apply this function
to our example expression, the result only varies in that it is wrapped in a Right constructor:

runEval2 (eval2a Map.empty exampleExp)⇒ Right (IntVal 18)

But unfortunately, when given an invalid expression, the error reporting of the ErrorT
transformer is not used. We have to modify our definition in order to give useful error messages:

eval2b :: Env → Exp → Eval2 Value
eval2b env (Lit i) = return $ IntVal i
eval2b env (Var n) = Map.lookup n env
eval2b env (Plus e1 e2 ) = do e1 ′ ← eval2b env e1

e2 ′ ← eval2b env e2
case (e1 ′, e2 ′) of

(IntVal i1 , IntVal i2 )→
return $ IntVal (i1 + i2 )
→ throwError "type error"

eval2b env (Abs n e) = return $ FunVal env n e
eval2b env (App e1 e2 ) = do val1 ← eval2b env e1
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val2 ← eval2b env e2
case val1 of

FunVal env ′ n body →
eval2b (Map.insert n val2 env ′) body
→ throwError "type error"

Now, when we try to evaluate an invalid expression, we get an error message, packaged in the
Left constructor. So by matching against the result of an evaluation, we can distinguish between
normal and error results.

runEval2 (eval2a Map.empty (Plus (Lit 1) (Abs "x" (Var "x"))))⇒
Left "type error"

But wait a minute! What is about Map.lookup n env? Shouldn’t we check whether it returns
Nothing and generate an appropriate error message? As mentioned above, Map.lookup returns
its result in an arbitrary monad, and the Control .Monad .Error module gives the necessary
definitions so that it works just out of the box:

runEval2 (eval2b Map.empty (Var "x"))⇒
Left "Data.Map.lookup: Key not found"

A little bit of closer inspection of function eval2b reveals that we can do even shorter (better?)
by exploiting the fact that monadic binding in a do expression uses the fail function whenever
a pattern match fails. And, as we have seen, the fail function does what we want.

eval2c :: Env → Exp → Eval2 Value
eval2c env (Lit i) = return $ IntVal i
eval2c env (Var n) = Map.lookup n env
eval2c env (Plus e1 e2 ) = do IntVal i1 ← eval2c env e1

IntVal i2 ← eval2c env e2
return $ IntVal (i1 + i2 )

eval2c env (Abs n e) = return $ FunVal env n e
eval2c env (App e1 e2 ) = do FunVal env ′ n body ← eval2c env e1

val2 ← eval2c env e2
eval2c (Map.insert n val2 env ′) body

The drawback of this function is that the error messages only talks about “pattern match
failure”, with no specific information about why the pattern match fails. Thus, in order to get
good error messages, it is better to provide our own calls to throwError . This is what we’ll do
for the final version of the error handling evaluation.

eval2 :: Env → Exp → Eval2 Value
eval2 env (Lit i) = return $ IntVal i
eval2 env (Var n) = case Map.lookup n env of

Nothing → throwError ("unbound variable: " ++ n)
Just val → return val

eval2 env (Plus e1 e2 ) = do e1 ′ ← eval2 env e1
e2 ′ ← eval2 env e2
case (e1 ′, e2 ′) of

(IntVal i1 , IntVal i2 )→
return $ IntVal (i1 + i2 )
→ throwError "type error in addition"

eval2 env (Abs n e) = return $ FunVal env n e
eval2 env (App e1 e2 ) = do val1 ← eval2 env e1
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val2 ← eval2 env e2
case val1 of

FunVal env ′ n body →
eval2 (Map.insert n val2 env ′) body
→ throwError "type error in application"

Note: The Control .Monad .Error module provides another function for catching errors raised
using throwError , called catchError :: m a → (e → m a) → m a for arbitrary error monads.
It can be used for either handling errors locally or passing them on to the surrounding calling
context.

2.4 Hiding the Environment

One way to make the definition of the evaluation function even more pleasing is to hide the
environment from all function definitions and calls. Since there is only one place where the
environment is extended (for function application) and two places where it is actually used (for
variables and λ expressions), we can reduce the amount of code by hiding it in all other places.
This will be done by adding a ReaderT monad transformer in order to implement a reader
monad. A reader monad passes a value into a computation and all its sub-computations. This
value can be read by all enclosed computations and get modified for nested computations. In
contrast to state monads (which will be introduced in Section ??), an encapsulated computation
cannot change the value used by surrounding computations.

We start by simply wrapping a ReaderT constructor around our previous monad.

type Eval3 α = ReaderT Env (ErrorT String Identity) α

The run function runEval3 must be slightly modified, because we need to pass in the initial
environment. The reason is that we will remove the environment parameter from the evaluation
function.

runEval3 :: Env → Eval3 α→ Either String α
runEval3 env ev = runIdentity (runErrorT (runReaderT ev env))

eval3 :: Exp → Eval3 Value
eval3 (Lit i) = return $ IntVal i
eval3 (Var n) = do env ← ask

case Map.lookup n env of
Nothing → throwError ("unbound variable: " ++ n)
Just val → return val

eval3 (Plus e1 e2 ) = do e1 ′ ← eval3 e1
e2 ′ ← eval3 e2
case (e1 ′, e2 ′) of

(IntVal i1 , IntVal i2 )→
return $ IntVal (i1 + i2 )
→ throwError "type error in addition"

eval3 (Abs n e) = do env ← ask
return $ FunVal env n e

eval3 (App e1 e2 ) = do val1 ← eval3 e1
val2 ← eval3 e2
case val1 of

FunVal env ′ n body →
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local (const (Map.insert n val2 env ′))
(eval3 body)

→ throwError "type error in application"

For our running example, we now have to evaluate

runEval3 Map.empty (eval3 exampleExp)

In all places where the current environment is needed, it is extracted from the hidden state of
the reader monad using the ask function. In the case of function application, the local function
is used for modifying the environment for the recursive call. Local has the type (r → r) →
m a → m a, that is we need to pass in a function which maps the current environment to
the one to be used in the nested computation, which is the second argument. In our case, the
nested environment does not depend on the current environment, so we simply pass in a constant
function using const .

Note: In addition to ask , a function asks is predefined, which expects a function mapping the
environment to a value. This can be used to extract individual components of the environment
by applying asks to record selector functions.

2.5 A Few Words on Monad Transformers

As we have mentioned, ErrorT transforms a monad into a MonadError :

newtype ErrorT e m a = ErrorT { runErrorT :: m (Either e a) }

instance (Monad m, Error e) => Monad (ErrorT e m) where
return a = ErrorT $ return (Right a)
m >>= k = ErrorT $ do

a <- runErrorT m
case a of

Left l -> return (Left l)
Right r -> runErrorT (k r)

fail msg = ErrorT $ return (Left (strMsg msg))

instance (Monad m, Error e) => MonadError e (ErrorT e m) where
throwError l = ErrorT $ return (Left l)
m ‘catchError‘ h = ErrorT $ do

a <- runErrorT m
case a of

Left l -> runErrorT (h l)
Right r -> return (Right r)

After we add another layer of ReaderT on the top, we get a MonadReader . So we are able
to call ask and local in eval3 . But we also need to call functions provided by the monads buried
inside ReaderT too! In this case, we want to call throwError provided by MonadError. We
could abstract this pattern with a new class:

class MonadTrans t where
lift :: Monad m => m a -> t m a

The lift function is supposed to be composed with functions whose return type corresponds
to the inner monad. In some sense, lift lifts the return value of a function up by one layer in
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the monad stack. Or, to think in a more intuitive way, lift sends your command inwards by one
layer. To access a function foo provided by a monad three layers down the stack, you need to
compose lift three times: lift $ lift $ lift $ foo.

Back to our example. As we should be expecting, the two transformers ReaderT and ErrorT
really are instances of the MonadTrans class:

instance MonadTrans (ReaderT r) where
lift m = ReaderT $ \_ -> m

instance (Error e) => MonadTrans (ErrorT e) where
lift m = ErrorT $ do

a <- m
return (Right a)

At this point you should be wondering, why were we able to call throwError in eval3 with-
out first lifting it? The answer is because the mtl writers decided to save us some time by
instantiating ReaderT as a MonadError. In fact, an ErrorT is a MonadReader too:

instance (MonadError e m) => MonadError e (ReaderT r m) where
throwError = lift . throwError
m ‘catchError‘ h = ReaderT $ \r -> runReaderT m r

‘catchError‘ \e -> runReaderT (h e) r

instance (Error e, MonadReader r m) => MonadReader r (ErrorT e m) where
ask = lift ask
local f m = ErrorT $ local f (runErrorT m)

The mtl writers even went through all the trouble and made the monad transformers in-
stances of each other (that is n2 instances)! If you need to build a new monad transformer
yourself, think carefully about the design of all the plumbing behind the scene.

Down in this document, we call liftIO in eval6 to perform I/O actions. Why do we need to
lift in this case? Because there is no IO class for which we can instantiate a type as. Therefore,
for I/O actions, we have to call lift to send the commands inwards. For eval6 , we would need
to compose lift four times to print something. This is just inconvenient, so people create a new
class MonadIO such that we only need to call liftIO once, without having to keep count of how
many times to compose lift :

class (Monad m) => MonadIO m where
liftIO :: IO a -> m a

instance MonadIO IO where
liftIO = id

instance (Error e, MonadIO m) => MonadIO (ErrorT e m) where
liftIO = lift . liftIO

instance (MonadIO m) => MonadIO (ReaderT r m) where
liftIO = lift . liftIO

Finally, let us study the types from runEval1 to runEval6 intuitively. runEval1 is easy.
For the other functions, they pick up the right types and compose them together along the
way as they peel the onion of monads. Just pay attention to how their types change as we
extend these functions. For example, let us decide the return value for runEval4 . Ignoring
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ReaderT as it does not affect the return value (although it does affect runEval4’s arguments),
runEval4 first peels off ErrorT and constructs a value of type Either String a. Next, it peels
off StateT and constructs a pair whose first component is the value being computed, and whose
second component is the side effect, i.e., the state. Therefore, the type of the final result is
(Either String a, Integer). In contrast, runEval4 ′ first peels off StateT and then ErrorT. Hence
we get Either String (a, Integer).

To learn more about monads and monad transformers in practice, read All About Monads,
Monad transformers on WikiBooks, Monad on haskell.org, and Write Yourself a Scheme in 48
Hours. For more category theory stuff, start with Category theory on WikiBooks, The Haskell
Programmer’s Guide to the IO Monad — Don’t Panic, and Monads for Programming Languages.

2.6 Adding State

Another important application of monads is to provide mutable state to otherwise purely func-
tional code. This can be done using a State monad, which provides operations for specifying an
initial state, querying the current state and changing it.

As an example, suppose that we want to add profiling capabilities to our little interpreter.
We define the new monad by wrapping a StateT constructor around the innermost monad,
Identity . (In the case of State and Error monads, the order of these constructor matters, as
we will see below.) The state maintained in our example is a simple integer value, but it could
be a value of any data type we wish. Normally, it will be a record holding the complete state
necessary for the task at hand.

type Eval4 α = ReaderT Env (ErrorT String (StateT Integer Identity)) α

The return type of the function runEval4 changes, because the final state is returned together
with the evaluation result (error or value). Additionally, we give the initial state as an additional
parameter so that we gain some flexibility (this can be used, for example, to start a computation
in the final state of another one).

runEval4 :: Env → Integer → Eval4 α→ (Either String α, Integer)
runEval4 env st ev = runIdentity (runStateT (runErrorT (runReaderT ev env)) st)

For our simple example, we only want to count the number of evaluation steps, that is the
number of calls to the eval4 function. All modification happens in a little helper function tick ,
which gets the hidden state from the computation, increases the counter and stores it back. The
type of tick is not Eval4 (), as should be expected, because we plan to re-use it in other sections
below. Therefore, we simply state that the monad in which tick will be used must be a state
monad, and that the state manipulated in that monad is numeric, so that we can use the (+)
operator on it.

tick :: (Num s,MonadState s m)⇒ m ()
tick = do st ← get

put (st + 1)

By adding a call to the tick function in each case, we can count the number of applications.

-- eval4 :: Exp -¿ Eval4 Value
eval4 (Lit i) = do tick

return $ IntVal i
eval4 (Var n) = do tick

env ← ask
case Map.lookup n env of

Nothing → throwError ("unbound variable: " ++ n)
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Just val → return val
eval4 (Plus e1 e2 ) = do tick

e1 ′ ← eval4 e1
e2 ′ ← eval4 e2
case (e1 ′, e2 ′) of

(IntVal i1 , IntVal i2 )→
return $ IntVal (i1 + i2 )
→ throwError "type error in addition"

eval4 (Abs n e) = do tick
env ← ask
return $ FunVal env n e

eval4 (App e1 e2 ) = do tick
val1 ← eval4 e1
val2 ← eval4 e2
case val1 of

FunVal env ′ n body →
local (const (Map.insert n val2 env ′))

(eval4 body)
→ throwError "type error in application"

Evaluating our example expression yields:

(Right (IntVal 18),8)

meaning that the evaluation was successful, returned the integer 18 and took 8 reduction steps.

Note: When the type of the Eval4 monad is changed to the following (StateT and ErrorT
are swapped), the interpretation of the monad changes.

type Eval4 ′ α = ReaderT Env (StateT Integer (ErrorT String Identity)) α

Instead of returning a result (error or normal) and a state, either an error or a result together
with the final state is returned, as can be seen in the type of the corresponding run function:

runEval4 ′ :: Env → Integer → Eval4 ′ α→ (Either String (α, Integer))
runEval4 ′ env st ev = runIdentity (runErrorT (runStateT (runReaderT ev env) st))

The position of the reader monad transformer does not matter, since it does not contribute to
the final result.

Note: The State monad also provides an additional function, gets which applies a projection
function to the state before returning it. There is also a function modify which can be used to
change the internal state by applying a function over it.

2.7 Adding Logging

The last monad transformer in the toolbox which will be described here is WriterT . It is in
some sense dual to ReaderT , because the functions it provides let you add values to the result
of the computation instead of using some values passed in.

type Eval5 α = ReaderT Env (ErrorT String
(WriterT [String ] (StateT Integer Identity))) α

Similar to StateT , WriterT interacts with ErrorT because it produces output. So depending
on the order of ErrorT and WriterT , the result will include the values written out or not when
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an error occurs. The values to be written out will be lists of strings. When you read the
documentation for the WriterT monad transformer, you will notice that the type of the output
values is restricted to be a member of the type class Monoid . This is necessary because the
methods of this class are used internally to construct the initial value and to combine several
values written out.

The running function is extended in the same way as earlier.

runEval5 :: Env → Integer → Eval5 α→ ((Either String α, [String ]), Integer)
runEval5 env st ev =

runIdentity (runStateT (runWriterT (runErrorT (runReaderT ev env))) st)

In the evaluation function, we illustrate the use of the writer monad by writing out the name of
each variable encountered during evaluation.

eval5 :: Exp → Eval5 Value
eval5 (Lit i) = do tick

return $ IntVal i
eval5 (Var n) = do tick

tell [n ]
env ← ask
case Map.lookup n env of

Nothing → throwError ("unbound variable: " ++ n)
Just val → return val

eval5 (Plus e1 e2 ) = do tick
e1 ′ ← eval5 e1
e2 ′ ← eval5 e2
case (e1 ′, e2 ′) of

(IntVal i1 , IntVal i2 )→
return $ IntVal (i1 + i2 )
→ throwError "type error in addition"

eval5 (Abs n e) = do tick
env ← ask
return $ FunVal env n e

eval5 (App e1 e2 ) = do tick
val1 ← eval5 e1
val2 ← eval5 e2
case val1 of

FunVal env ′ n body →
local (const (Map.insert n val2 env ′))

(eval5 body)
→ throwError "type error in application"

2.8 What about I/O?

Until now, we have not considered one importand aspect: input and output. How do we integrate
I/O into the monadic definitions we have developed so far? It is not possible to define an I/O
monad transformer, because the execution of I/O operations in Haskell cannot be arbitrarily
nested into other functions or monads, they are only allowed in the monad IO . Fortunately, the
monad transformer library provides us with the infrastructure to easily integrate I/O operations
into our framework: we simply substitute IO where we have used Identity ! This is possible
because Identity is the base monad, and as we have seen, the function runIdentity for evaluating
actions in this monad is always applied last.
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type Eval6 α = ReaderT Env (ErrorT String
(WriterT [String ] (StateT Integer IO))) α

The return type of runEval6 is wrapped in an IO constructor, which means that the running
an Eval6 computation does not directly yield a result, but an I/O computation which must be
run in order to get at the result. Accordingly, the runIdentity invocation disappears.

runEval6 :: Env → Integer → Eval6 α→ IO ((Either String α, [String ]), Integer)
runEval6 env st ev =

runStateT (runWriterT (runErrorT (runReaderT ev env))) st

In the eval6 function we can now use I/O operations, with one minor notational inconvenience:
we have to invoke the operations using the function liftIO , which lifts the I/O computation
into the currently running monad. As an example, we chose to print out each integer constant
as soon as it is evaluated. (We don’t think this is good style, but it illustrates the point and
sometimes makes a good debugging technique.)

eval6 :: Exp → Eval6 Value
eval6 (Lit i) = do tick

liftIO $ print i
return $ IntVal i

eval6 (Var n) = do tick
tell [n ]
env ← ask
case Map.lookup n env of

Nothing → throwError ("unbound variable: " ++ n)
Just val → return val

eval6 (Plus e1 e2 ) = do tick
e1 ′ ← eval6 e1
e2 ′ ← eval6 e2
case (e1 ′, e2 ′) of

(IntVal i1 , IntVal i2 )→
return $ IntVal (i1 + i2 )
→ throwError "type error in addition"

eval6 (Abs n e) = do tick
env ← ask
return $ FunVal env n e

eval6 (App e1 e2 ) = do tick
val1 ← eval6 e1
val2 ← eval6 e2
case val1 of

FunVal env ′ n body →
local (const (Map.insert n val2 env ′))

(eval6 body)
→ throwError "type error in application"

3 Conclusion

Monad transformers are a powerful tool in the toolbox of a functional programmer. This paper
introduces several of the monad transformers available in current Haskell implementations, and
shows how to use and combine them in the context of a simple functional interpreter.
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We have not covered all monad transformers presently implemented in Haskell (e.g., continu-
ation and list monad transformers) and recommend to read the library documentation available
from the Haskell web site for additional information.

The use of monad transformers makes it very easy to define specialized monads for many
applications, reducing the temptation to put everything possibly needed into the one and only
monad hand-made for the current application.

Happy hacking in Haskell!8
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